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ABSTRACT. Two networks are said to be dual to each other if the following 
correspondence exists between them :- 

(a) Each element of one network has a counterpart in the other one. 
(b) The currents through the elements in one network and the voltages across their 

A network dual to a given one is usually constructed by connectmg elements of the 
appropriate kind in a circuit the diagram of which forms the topological counterpart to 
the diagram of the original circuit. If this original circuit is a “ non-planar ” one (i.e. if 
it cannot be drawn without crossings between some of its branches), then there exlsts no 
topological dual, and for t h s  reason it has been said that there exlsts no dual to a non- 
planar electrical network. However, if we are interested in an electrical network not 
because its circuit diagram has certam geometrical properties, but because it constitutes 
an assembly of a number of passive and active elements whch perform in a certain manner 
(on account of their impedance properties and of certain relations of mutual constraint 
imposed by Kirchhoff’s mesh and junction relations), then there is really no restriction of 
h i s  lund. 

We need only convert the original network into another with the same elements and 
the same performance, but with a planar circuit hagram and with additional constraints 
implemented by ideal transformers. This equivalent network can be then converted 
into its dual counterpart, whch is another planar network subject to the dual counterparts 
of the transformer constraints of the first case. In ths way we arrive at an assembly 
whch performs in the required dual manner. 

Introducing thus the concept of physical duality as opposed to geometrical duality, 
the paper explains in an elementary manner a number of ways in which thisconversion 
into equivalent planar networks can be acheved. 

(1) A method originally published by Julia. 
(2) The dual counterpart of t h s  method. 

(3) ,The method offictztious junction poznts (an electrical analogue to F. Schur’s method 

(4) The method of the transjened terminal. 
( 5 )  The general method of separation. 
Some of these methods require a smaller number of ideal transformers than Juka’s 

or iha l  method. 
The paper ends with a short discussion of the errors introduced when the, dual network 

is set up on a network analyser and when the ideal transformers have to  be replacedby 
real Ones ; the numerous methods available for the realization of an equvalent network 
enable a choice to be made SO as to minimize these errors, or possibly eliminate them 
altogether. 

The existence of a dual to a non-planar network is of some interest in connection with 
electro-mechanical analogies as it removes a restriction to which the “ direct ” analom 
would otherwise be subjected. 

counterparts in the other network are proportional to each other. 

These methods are :- 

of fictitious junction points in pin-jointed frameworks). 
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8 1 .  I N T R O D U C T I O N :  T H E  PRINCIPLE O F  DUALITY 

w o networks are said to be dual to each other ifthe following correspondence 
exists between them :- 

(a) Each element of one network has a counterpart in the other. 
(b) The currents through the elements of one network and the vel- 

tages across their counterparts in the other network are proportional 
to each other. 

T 
In other words, we have the following relations :- 

iK’ Rol = er” , 
ii’R1o=eK’ ) 

..... .(1) 

...... (2) 
where iK’ and eK‘ are current and voltage at element K’ of the first network and 
iK” and eK” current and voltage at the corresponding element IC“‘ of the second 
network, and where Rol and RIo are two constants (each of the dimension of a 
resistance) which are characteristic of the particular correspondence under 
consideration. 

I t  is obvious then that the behaviour of one network is U copy of that of the other 
network, but with the d e s  of current and voltage znterchanged. 

We shall see in the following that the existence of such a relation can be 
predicted by very simple criteria, and for this reason it will obviously be useful, 
for it will enable us to predict the performance of one network without a pre- 
ceding analysis provided we know the behaviour o f  its dual counterpart. This 
Principle of Duality has been known for some time. The phrase seems to have 
been introduced into electric network theory by H. Sire de Vilar (1901). The 
first textbook dealing with it was A. Russell’s Theory of Alternating Currents 
(1904), which gives a large number of applications and a list of earlier references, 
There are, or rather were, however, certain difficulties in the application of the 
principle whenever one of the networks concerned was ‘ I  non-planar.”” 

These difficulties give rise to an interesting question in connection with 
electro-mechanical analogies (Bloch, 1945). There are two types of such an 
analogy : one in which we represent a force by a voltage (the ‘ I  direct’’ analogy), 
and one in which we represent a force by a current (the “ inverse )’ analogy). 
If we represent a given mechanical system once by the first and once by the 
second type of analogy then we obtain two electrical networks which are- 
obviously-in dual relationship to each other. Now the circuit diagram 
of the inverse type of analogy can always be obtained as a simple translation 
of the mechanical layout if this is drawn according to certain conventions. Should 
this circuit diagram be of the non-planar type, and were we to take the statement 
literally that there exists no dual to such a network,? then we would have to 
acknowledge that the field of application of the direct analogy was restricted. 
We shall see that this is not the case, and that the apparent contradiction turns 
on the definition of the concept of duality. Before concentrating on the special 

* A non-planar network is one the circuit diagram of which cannot be drawn wlthout crossWs 
between some of its branches. 

t Whitney (1931) shows that there exmts no geometrical dual to a non-planar graph; €bJ”s 
and Gardener (1932) seem to take this as the basis of their statement that there exlsts no dud 
to a non-planar network. 
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problem of the present paper we shall therefore deal first more fully with the 
normal and general aspects of the duality principle. 

It will be seen that we have to distinguish between duality in a topological 
Sense and duality in a physical sense. By duality in a physical sense we have in  
mind a correspondence between two assemblies of elements such as outlined 
above, a correspondence which is concerned only with the bebv i  r of the 
elements specified. By duality in the topological sense we hav.e in m' F nd a relation 
between the structure of the two circuit diagrams such that each branch of one 
network has its counterpart in the other network and that all those branches 
of one network which radiate from a particular junction point have counter- 
parts in the other network which form a closed mesh. The fact that the branches 
of the network are linked together in a certain way imposes on the currents therein 
and on the voltages across them certain conditions of constraint commonly 
known as Kirchhoffs equations. These conditions of constraint are obviously 
decisive for the behaviour of the network. Now we shall see that in order to 
bring about dual behaviour of two networks it is sufficient to establish a certain 
impedance relation between corresponding elements of the two networks, to 
provide external sources of dual character, and finally to provide conditions of 
constraint which are of dual character. If we insist in bringing about this dual 
type of constraint by an appropriate structure of the circuit diagram-and by 
this means only-then we shall see that the concepts of physical and of topo- 
logical duality are inseparably linked. On the other hand, if we are only interested 
in the behaviour of the networks (i.e., assemblies of elements), such topological 
duality is immaterial ; we may then introduce the required conditions of constraint 
by other means. These other means are ideal transformers, and we shall see 
by their use it will always be possible to specify one or more networks which are 
dual in the physical sens'e. Thus the theorem that there exists no topological 
dual to a non-planar network does not occupy the dominant position which one 
might at first assume. It is nevertheless still of interest, for obviously topological 
duality is the simplest way of bringing about dual conditions of constraint, and 
we shall always try first to achieve it. Knowledge of the theorem will, how- 
ever, save us from useless attempts to find this ideal solution. 

The present paper discusses first R. Julia's method for deriving a physically 
dual network by the introduction of ideal transformers. By giving the justification 
for this procedure more fully than it was given in his original publication we are 
automatically led to further methods of achieving the same result. This is  
useful, for some of the new methods require a smaller number of ideal trans- 
formers than Julia's original method. At the same time the fact that we are 
thus able to choose between a whole series of different embodiments of the dual 
network will be useful when we attempt to set up the dual network in a network 
analyser, fok some of these alternative ways will possibly be less susceptible to the 
imperfections introduced by the use of real transformers in place of the ideal ones. 

$ 2  C R I T E R I A  O F  D U A L  C O R R E S P O N D E N C E  : C O N S T R U C T I O N  O F  T H E  
D U A L  C O U N T E R P A R T  I N  T H E  C A S E  OF P L A N A R  N E T W O R K S  

The existence of the dual relationship between two networks as specified 
by equations (1) and (2) can be predicted very simply if we pause for a moment 
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and consider what data determine the behaviour of a given network. 
are : - 

'rhere 

( a )  The relations between the currents through and the voltages across the 
various elements of the network, i.e. a series of equations of the type 

i,' =f(eK') ; . . 9 . . . (3) 
( 6 )  T h M a y  in which these elements are connected, i.e. the relations of 

constraint which exist between the currents meeting at a given junction 
point and the voltages which we encounter when we pass around a 
closed mesh (Kirchhoff's equations) ; 

( c )  The initial state of the network (currents through and voltages across 
certain elements) ; 

( d )  The external " causes " (voltages or currents) impressed on the network. 

All these data together give us a system of equations-not necessarily a linear 
one-the solution of which describes the behaviour of the network. 

Suppose now that we have a second network for which we can list a corres- 
ponding set of data, the correspondence being of the type described by equations 
(1) and (2). This means that we get a corresponding set of data which is of the 
same form as the original one but with the difference that the symbols i and 
.e have changed places. I t  is obvious then that the resultant system of equa- 
tions will show the same interchange of symbols, and the same holds for the 
final solution of this system. Hence the second network must show a behaviour 
dual to that of the first network. 

Let us now discuss in detail what is involved in having such an interchanged 
set of data between two networks. In  order not to interrupt the exposition we 
shall deal first with the items (c) and (d) .  The dual counterpart of the initial 
conditions is self-evident; any statement of this type can be translated in a 
straightforward manner by the application of equations (1) and (2). The same 
applies to the specification of the external " sources " which are connected to the 
network. A voltage source corresponds to a current source of proportional 
strength and vice versa. 

As regards (a), equation (3) is, according to equations (1) and (2)) replaced 
by an equation of the type 

, . . . * (4) 
i.e., apart from factors of proportionality, the graph of current against voltage 
for each element of the original system will represent the graph of volts against 
current in the new system. If we limit ourselves to linear systems and study 
the steady-state behaviour of such systems at a frequency w we have for any 
particalar element of the first system and for its counterpart the relatibns 

where Z,' and Z4' denote the impedances of the elements concerned. Multi- 
plying these two equations and taking into account equations (1) and (2)) we 
obtain 

RolRlo = Z.lZ,". . . . . . .(6) 
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Equivalent expressions for the last equation are 

...... (7) 

where Y,’= l/&’ and Y$’= l/ZKf’, 

and where y02 = Ro’R ...... (8) 
From these equations it follows that the dual counterpart of a resistance R 

is a conductance G = R/ro2, that the counterpart of an inductance L is a capacitance 
,c= L/ro2 and that of a capacitance C an inductance L = Cr,,a. 

It will be noted that these relations are independent of the frequency U ,  

i.e., that dual relationship once found for certain frequencies will be valid for all 
frequencies. On account of Fourier’s theorem this means that once the dual 
relationship is established for steady-state conditions at one particular frequency 
it will hold good not only for steady-state operation at any other frequency but 
,also for transient behaviour. 

Turning now to point (b ) ,  the problem of interconnection of elements, we will 
discuss a special case first, namely the case where two or more elements in the 
first system are connected in series. This means that all these elements carry 
the same current, and that their voltages add. Their dual counterparts must 
then be so connected that across each of them appears the same voltage, and that 
all their currents add, i.e. they must be connected in parallel. This relation 
works, of course, the other way round. I t  is a very useful relation, for it can be 
applied for checking even when we have to deal with a more general type of 
network; we can always give to some of the impedances of a network the values 
zero or infinity, and thereby derive from the given network a number of simpler 
networks to which these conversion rules can be applied. (We might establish 
here a principle of “ detailed reciprocation ”, the name being chosen in analogy 
to the “ principle of detailed balancing ” as used in thermodynamics). 

A more general way of establishing relations of constraint dual to the given 
ones is based on a consideration of Kirchhoff’s equations. Suppose we have 
for a junction point (a) of the given network written down the condition that 
the sum of all branch currents reaching this point is zero, i.e. 

i b l + i L 2 +  . . .  .=o. ...... (9) 

eLi+e&+ . . .  .=O, ......( 10) 

It follows then that in the dual network the voltages across the counterparts 
of all these branches must add up to zero : 

i.e., we would normally expect these counterparts to be so arranged that they 
formed a closed mesh. Conversely we see that elements which are so arranged 
that they form a closed mesh should have dual counterparts which are joined 
to a common junction. We see that dual conditions of constraint are automatically 
introduced if the second network is in this particular geometrical relation to the 
first one, i.e. if it is the topological dual of the first network. 

There exists a routine method for drawing such a topological dual(Cauer, 1934). 
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In the interior of each mesh of the given network we select a point. These points 
will form the junction points of the new network ; we need only join each of these 
points to its neighbours (i.e. to those new points situated in adjoining meshes} 
in order to complete the layout of the dual network. Each new branch crosses 
one old branch (the branch which was common to the two adjoining meshes). 
The procedure is illustrated in figures la and 1 b. In figure la the new 
circuit is sketched in dotted lines, in figure 1 b it is redrawn, and at the same time- 
the proper elements inserted, taking into account the relations (6 )  and (7) and 
their consequences as to the interchange of capacities and inductances. It is 
seen that in a case where the original branch is composed of several elements in 

. - .------- - 

Figure 1 a. Figure 1 b.  

series (e.g. 4 and 6 )  we could draw such a crossing line through each of these 
elements ; all these new branches are then in parallel, and if we place into each of 
these new branches an element with an admittance proportional to the impedance 
of the " crossed" old element the resulting compound admittance will obviously 
be the correct dual of the original compound impedance.* 

The procedure just described breaks down if the original circuit diagram 
cannot be drawn without crossings between some of the lines (" non-planar " 
networks). Such networks have no topological duals, and in their case we have 
to use other means for introducing the required constraints between the various 
elements of the dual network. 

§ 3. I D E A L  T R A N S F O R M E R S  

We shall now enter into a discussion of these other means Ghich will enable 
US to introduce the required constraints. Suppose we have an iron core with 
several windings of the same number of turns, i.e. a multi-winding transformer, 
schematically represented in figure 2 a. Let us assume further that the per- 
meability of the core material is infinite and that the windings have negligible 
leakage. In  this case we are then assured that the same flux is linked with each 
of the windings, i.e. that the terminal voltages of all the windings are equal. 
Furthermore, the finite flux required for any such finite voltage can then be 

* It will be noted that this method of drawmg the dual circuit can also be used to define a 
conslstent mannei the sense of the dual currents or voltages. We need only agree that the arrow* 
defining thls sense in the new branches must be produced from those of the original network by, 
say, a rotation m a clockwise rotation. 
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produced by a magnetomotive force which is infinitesimally small, i.e. we must 
have 

i,+i,+i,+ ... .=o. ...... (11) 

A transformer of this kind is called an ideal transformer. Real transformers , 
differ from the ideal one by possessing leakage inductance which we might 
visualize as a separate inductance connected in series with each individual 
winding and by requiring a finite magnetomotive force for the creation of their 
magnetic flux. With real transformers the voltages across the individual 
windings may then no longer be exactly equal, and furthermore, equation (11) 
will be only approximately fulfilled. These deviations are, however, usually 
small, and they can possibly be allowed for if it is desired actually to build the 
dual network. For a discussion of principles we are certainly allowed to make 
use of the concept of an ideal transformer, and we see that a transformer of the 
type just described imposes on the currents through its windings the same con- 
straints as if they were associated with a common junction point. 

There 
the magnetic circuit is so arranged that the cores of the individual coils-which 

The dual counterpart to such a transformer is shown in figure 2 b. 

Figure 2 a. Figure 2 b. 

in figure 2 a were all connected in series-are all connected in parallel. In 
this magnetic circuit, the sum of all the magnetic fluxes which arrives at one of the 
magnetic junctions must be zero, and from this it follows that the sum of all the 
voltages of the windings of the various cores (which individually are proportional 
to the fluxes of the corresponding cores) must be zero : 

e,+e,+e,+ .. .=O. ......( 12) 

Associated with this condition is the condition that the currents through 
all the windings must be equal ; otherwise the magnetomotive force of thk 
individual limbs would not be equal and-in view of the assumed infinite per- 
meability of the core material-the difference in the m.m.f. of any two of the 
limbs would drive a magnetic flux of infinite magnitude around the closed circuit 
formed by these two limbs. A transformer of the second type enforces, therefore, 
the same type of constraint as results from the existence of a closed mesh. Trans- 
formers with two windings are obviously special cases of these general multi-. 
winding transformers, and we see that in their case the two qpes  are identical. 

Transformers with two windings are easier to build so as to approach the 
requirements of zero leakage inductance. It is therefore of interest-for those 
Cases where it is intended to set up a physical circuit-that the same results that 
Can be obtained by a multi-winding transformer with n windings can be obtained 
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by the use of n - 1  transformers with two mindings only. If we start with 
n transformers with two windings we need only connect all the secondaries in 
series forming a closed loop, in order to enforce on all the primary voltages the 
condition that theii sum ;s zero. On the other hand, if we connect all the 
secondaries in parallel we enforce the condition that the sum of all the primary 
currents is zero. As figure 3 shows (for the case n = 3), one of those transformers 
is actually redundant. (For the purpose of derivation it is often convenient 
to retain n transformers and to carry out the reduction to n - 1 as a last step,) 

Having thus shown that these transformers will enable us to enforce con. 
straints of the “ mesh ” and “ junction ” type,* we have to consider how the 
method, described in the preceding section, for the routine derivation of the dud 
network can be operated in the presence of such circuit elements. The dual 
network we would expect to be subject to transformer constraints which are the 
.dual counterparts of the transformer constraints of the original network. It will 
be seen that this routine method automatically takes care of the situation provided 
we  stipulate that each transformer coil encountered in this process is taken to 

Figure 3 a. Figure 3 b. 

have as counterpart another transformer coil assembled on an ideal transformer 
of the dual type. Suppose we have in the first network a number of elements 
zi, e;, 2;) . . . . , each with such a transformer coil in series, the transformer itself 
being of the junction type, which insures that the sum of the currents ii, i:, ii , . . . . 
through all these elements is zero. I n  the new network these coils will auto- 
matically be placed in parallel to the dual counterparts Yy Yg Yi of the elements 
zi, zi, 2; . . . . , and thereby enforce the condition that in the dual networkthe 
voltages e: e;’ e:. . . . across these elements shall add up to zero. Obviously 
the method would have worked just as well the other way round, and would 
have converted a constraint of the mesh type into one of the junction type. 

It is perhaps of interest to note that the change over from the one type of 
transformer to its dual counterpart is actually included in the routine process 
.of “ dualization ” provided we pay attention not only to the electrical but also 
to the magnetic circuits, the junction type of transformer having a magnetic 
circuit dual to that of a mesh type (figures 2 a and 2 b) .  If we replace the 
multi-winding transformer by two-winding transformers the exchange of types 
is  simply a consequence of “ dualizing ” the connection of the secondary windings. 

We shall for this reason refer to such transformers as mesh or junction-type transformers* 
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$4.  T H E  CASE O F  NON-PLANAR N E T W O R K S  

(a) The general principle 

Networks of this 
type can be converted in various ways-presently to be described-into equivalent 

networks which are subject to additional constraints by the aid of one or 
several ideal transformers. -By equivalence we mean here that the resultan; 
networks possess, apart from those specially added ideal transformers, the same 
elements as the original one, and that the currents and voltages at these elements 
are identical with those of the original network. This equivalent network is 
then converted into its dual counterpart by the routine method already described. 

Of the varioii~ methods to convert a non-planar network into an equivalent 
planar network we shall discuss here the following-without making an attempt 
to be exhaustive : Julia's method (1939) ; a method dual to Julia's method; the 
method of fictitious junction points, the method of the transferred terminal ; 
and the general method of separation. 

We are now in a position to deal with non-planar networks. 

(b) Julia's method 

This method is characterized by the following steps :- 
(1) Select a suitable junction poi it and introduce into each of thq branches 

leading to this point the coil of a junction-type transformer. This will not alter 
the current distribution in the network as the constraint exercised by this trans- 
former is identical with that already in existence. In  6gure 4 b the junction 
point selected was point A of the original network, illustrated in figure 4 a. 

(2) Short circuit one of the branches leading to the junction point selected, 
This has been indicated in figure 4 b by the dotted line which connects A to D,  
and short circuits branch 1. This step again will not alter the current distribution 
ofthenetwork ; though we have lifted by this step the constraint originally exercised 
by the existence of the junction point A, the transformer coils exercise now an 
identical constraint. Since the sum of the currents flowing through the ideal 
transformer windings is zero, there can be no current through the short-circuiting 
link. 

(3) Duplicate the short-circuiting link in the way shown in figure 4 c ,  
introducing thereby the auxiliary junction points A' and D' (figure 4 c shows 
only those parts of the original network which are essential to the argument). 

(4) Cut the link AA' ; this cannot alter the current distribution in the network, 
because the potential difference AA' after the cut is still zero on account of the 
connection DD'. But now we are allowed to cut DD'  as well, for the current 
through this isthmus must, of course, always be zero. 

By these steps we have split the original network into two entirely sup arate 
networks, the elements of which have still the same voltages across and. the same 
currents through them as they had before, (We need not have cut DD', for 
after the cut AA' has been made it would have been possible simply to fold 
aside the loop containing 2, and produce thereby a plane configuration:) 

We may check that 
on account of the transformer action the current through element 2, is still 

The new plane configuration is redrawn in figure 4 d.  
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equal to the algebraic sum of the currents through elements 2, and 2, ; further- 
more, that the voltage drop in going from D to B is equal to the voltages across 
elements Z3 and Z,, and similarly the voltage drop in going from D to F is equal 
to drops across Z2 apd Zl. 

F C 

29  
Figure 4 n 

F 

b9 
Figure 4 d 

e 

Figure 4 f. 

XD, D 

Figure 4 h Figure 4 L 

e 

e 

F g u e  4g. 

NOW the new configuration of elements, being a planar one, can be trans- 
formed into its dual counterpart by the method described above. We arrive 
then at the network shown in figure 4 e .  Figure 4 f shows the same network 
with two 2-winding transformers. Figure 4g is included for the sake of 
interest: it shows the final network at which we would have arrived had we 
eliminated from the original network the junction point D instead of A. 
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(c) The d u d  counterpart t o  Julia’s method 

687 

We come now to the description of a new method for the derivation of an 
equivalent planar network which can be characterized as the dual counterpart . 
,,f Julia’s method. In  Julia’s method we used transformer action to replace a 
junction type of constraint. Consequently, the dual network arrived at is one 
in which transformer action is used to implement a mesh type of constrain;. 

Obviously it is possible to invert this procedure, i.e. we can start by replacing 
a mesh type of constraint by transformer action and finish them with a dual 
network in which transformers implement a junction type of constraint. To 

Figure 5 b. Figure 5 c. Figure 5 a. 

Figure 5 d. 

illustrate this procedure we shall carry it out with the same network which we 
used just now, and we shall again eliminate from this network branch 1. To 
achieve this we proceed in the following steps :- 

The 
mesh to be selected may also include such branches of the original network as 
contain elements of infinite impedance. Thus, for instance, we may select 
in figure 4 a the mesh ADEA, of which the branch AE is of infinite impedance, 
and therefore not explicitly shown as (I branch” in the diagram. Place in 
parallel to each mesh branch the coil of a mesh type of ideal transformer (or the 
input coil of an ideal two-winding transformer, the secondaries of which are 
all connected in series). This step, illustrated in figure 5 a,* cannot upset 
the current distribution in the network, for the constraint thereby imposed is 
identical with one already in existence. 

(2) Re-draw this network in the way shown in figure 5 b, introducing thereby 
the auxiliary junction points A‘ and D’. This further step 

(1) Select a suitable mesh which contains the branch to be eliminated. 

Cut the link AA‘ 
* The figure shows only those branches which are relevant to the argument. 
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is permissible without upsetting the network performance as, on account of the 
transformer action, the potential difference across coil 1 is maintained independent 
of any current flowing therein ; hence the potential difference AA’ after the 
must still be zero.* 

(3) Cut the link DD’; this is permissible now-after the cut AA’ has been 
carried out as the current in the isthmus DD’ must be zero. 

By these steps we have again removed branch 1 from the original network, 
Figure 5 c shows how the same end can be achieved by the use of 2 two-winding 
transformers. Here it is immediately obvious that the two transformers supply 
a potential AE + ED =AD to element 1, and that the current drawn by this element 
is in fact still drawn (via the primaries) from junction point A and returned to 
junction point D. 

There is no need to 
illustrate separately the dual to the network shown in figure 5 b. 

(d) The method of the fictitious junction point 

Figure 5 d shows the dual to this latter network. 

This method can be considered as a generalization of Julia’s method; it will 
as a rule lead to a smaller number of ideal transformers. 

Julia’s method was characterized by the short circuiting of a branch--this 
short circuit being without influence on the current distribution on account of the 
transformer constraint previously introduced. The new method introduces 
a short circuit at the cross-over of two or more suitably selected branches, By 
converting thus all the cross-overs in the network into real junction points, the 
network ceases to be a non-planar one. The original current distribution is 
again maintained by the introduction of suitable transformer constraints. 

Figure 6 a 
shows two branches of the original network which cross each other without making 
contact. In  figure 6 b this cross-over has been converted into a real junction 
point (X) ; the original current distribution has nevertheless been maintained 
by the insertion of the primary and secondary coil of an ideal transformer into the 
lead BD. The action of this transformer ensures that a s  much current leaves 
the new junction point X through .Z4 as arrives there through Z2. Hence none 
of this current can leave through Z1 or 2,. (The introduction of another trans- 
former into the branches containing the elements 8, and 2, would of course 
be permissible, and may in a practical case aid in the maintenance of this state 
of affairs). Figure 6 c finally shows the dual counterpart of the network section 
shown in figure 6 b .  

An application of the principle just discussed to the network of figure 4 a  
is shown in figures 7 a and 7 b. It will be noted that by this method we save- 
compared with the solutions previously given-one ideal transformer. This 
saving in a number of ideal transformers is larger still in the case of the network 
shown in figure 8 a which represents the second example given in Julia’s paper. 
In  dealing with this network Julia removes the junction point A, and requires 

The principle of the method is illustrated in figures 6 a to 6 c. 

* A somewhat more detailed argument is as follows : As the potential across coil 1 
unchanged, the current through element 2, remams also unchanged. After the cut, this Current 
must be supplied from the transformer coil 1, and for this reason all the other coils must then 
a current equal to this current. This means that at Junction point A a current equal to this Current 
is still leaving (mto coil AE), and at junction point D a current of equal magnitude IS still arrlvmg. 
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for this purpose either an ideal transformer with four windings or three trms- 
formers with two windings. From inspection of figure 8 a it follows immediately 

C 

Figure 6a. D 

4 
Figure 6 C. 

C 

b 

Figure 7 Q. Figure 7 b. 

Flgure 8 a. Figure 8 c. Figure 8 b. 

that this case can be dealt with by one ideal transformer with two windings orily- 
Figures 8 b and 8 c show alternative solutions, obviously without exhausting 
the numerous possibilities. 
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The artifice of the fictitious junction point here introduced is of some funher 
theoretical interest. As is well known, reciprocal diagrams of the type discussed 
occur also in graphicaL statics as reciprocal stress diagrams to pin-jointed frame. 
works. Frameworks with non-planar lay-out diagrams could not be solved 
by the original method. This difficulty was overcome by F. Schur (1897) by 
the introduction of fictitbus pin-joints. Whilst, however, such a fictitious 
joint may be introduced into the lay-out of the framework without upsetting 
the stress distribution, the application of the analogous artifices in the case of the 
electrical network requires the special measures discussed above. 

(e) The method of the transferred terminal 
Certain cases of this method arise from an application of the method of the 

fictitious junction point just discussed, It will be noted that in the example of 
figure 7 the effect of introducing the fictitious junction point is that now 8, is 
connected directly * to junction point B instead of A. Such a " transfer of the 
terminal )' will always take place, for instance, when the two leads crossing each 
other contain only one element each-instead of the two assumed in figure 6. 

However, the transfer method is not restricted to the presence of such crossing 
branches. Quite generally if (figure 9 a )  A and B represent two junction 
points of the network, and 2, an element fed from point A. we can join A to B 

P" 
Figure 9 a. Figure 9 b. 

by the primary and secondary f an ideal transformer, as shown. We are then 
allowed to break the connection between primary and secondary at X-for on 
account of the transformer action no difference of potential can arise between 
the separated leads and, therefore, no change in the current through 2t can take 
place. This current is, however, now supplied from B instead of from A ;  in 
addition, there flows in the primary of the transformer a current equal to that 
taken from E, in the direction from A to B. Hence, as far as the rest of.the 
network is concerned, the current distribution remains unchanged. For the 
sake of clarity the change in the configuration of the network brought about 
by this step is illustrated again in figure 9 b. 

* It is true that III the diagram shown, the transformer cpil is interposed between the t e m d  
of B and A ; however, the dlagram could obviously have been drawn with the order of these two 
elements in branch 1 inverted. 
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(f) The general method of separation 
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This method, which can be described as a generalization of- the dual to Julia’s 
method, is illustrated in figure 10. Instead of eliminating a single branch from 
the original network we eliminate at one time several branches which together 
form one or more subsidiary networks. 

Suppose we select in the original network a closed mesh containing the 
junction points (in this order) MNPQ . . . . Znd we join M to N, by the primary 
of an ideal two-winding transformer, similarly N to P, and so on. We are then 
allowed to join consecutively all the secondaries of these transformers so as to 
form a closed mesh. The mesh of the secondaries forms a kind of “ parallel ” 
mesh to the mesh formed by the primaries. Let us label the junction points 
of this second mesh M’N’P’Q’ . . . . It is obvious that the potential difference 
between any one pair of these latter points is a replica of the potential difference 
of the corresponding unprimed points. For this reason any branch extending 

N 

P 
Figure 10. 

between any pair of the unprimed junction points can be tiansferred to the 
corresponding primed points on the parallel mesh without altering the conditions 
of i ts  working. The current drawn by such a branch still leaves the original 
network at the old junction points as currents which feed the primaries of the 
transformers concerned. Hence we have here a very simple means by which 
we can split the original network into two subsidiary networks wh‘ch are only 
coupled by transformer action. 

It is easily seen that the transformers need not actually form a closed mesh : 
one of the sides of the mesh may be left out. Furthermore, the mesh selected 
may-as was the case before (figure 5 a)-contain branches of infinite impedance. 

This concludes the description of the various methods of network transforma- 
tion which, it is felt, covers all needs arising in practice. No attempt has been 
made to cover the subject exhaustively. 

Application 
The possibility of constructing without restriction a network that is physically 

I t  may, however, dual to a given network is in itself only of academic interest. 
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become of immediate practical interest in connection with the increasing use of 
electro-mechanical analogies. As shown elsewhere (e.g. Bloch, 1945), we can study 
the action of an electro-mechanical system if we connect the electrical part of 
this system to a network which is the electrical analogue of the mechanical pan 
of this system ; this reduces the analysis to that of a single electrical network. 
However, this possibility exists only when we use the correct type of analogy: ' 

the direct one for the electrostatic- type of coupling element and the inverse 
one for the electromagnetic type of coupling element. For the reasons already 
mentioned in the introduction to this paper, this method would break down- 
but for the methods here described-if we had to use the direct analogy in a case 
where the mechanical layout, and therefore the inverse analogue, were non- 
planar. 

The methods ofthis paper enable us 
(a) To draw a diagram of the direct analogue, and hence of the combined 

network, which we can use as a basis for further calculation or consideration. 
In  this case it is obvious that we need not worry about the performance of those 
ideal transformers ; they are ideal by definition. 

Figure 11 a. Figure 11 b. 

(b)  To set up an actual circuit, say, on a network analyser which will 
enable us to study directly by measurement the performance of the electrical 
circuit or of the u'nderlying mechanical system. In this case the ideal 
transformers have to be replaced by real ones. As real transformers do not 
behave exactly like ideal ones, errors may arise from this, and it is here that the 
possibility of choosing from a large number of different methods becomes of 
value; it may be possible then to select a method in which the imperfectlon 
of the real transformers are innocuous. 

Figure 11 (a) shows a well-known equivalent circuit for a real transformer, 
i.e. a theoretical conception which explains the behaviour of a real transformer 
as arising from the combination of an ideal transformer with certain inductances : 
leakage inductances L1 and L,, and shunt inductances L,. It is perhaps worth 
while to point out that the distribution of the leakage inductance on the primary 
and secondary side of the transformer is to some extent arbitrary, and depends 
on the assumption made as to the magnitude of the ratio of the ideal transformer. 
By a suitable assumption it is possible to have all the leakage inductance concen- 
trated on the primary or on the secondary side. We arrive thus at an equivalent 
circuit such as shown in figure 11 b. 

The error caused by the leakage inductance is of course small in all those 
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cases where the impedance of this additional inductance is small compared with 
all the other impedances in series with it. Similarly the error caused by the 
presence of the shunt inductance will be small when its admittance is small 
compared with the other admi€tances across which it is connected. In  certain 
cases it will be possible to reduce these errors actually to zero-at least as far as 

Suppose the transformer coil is connected 
in series with another inductance larger than the leakage inductance. Obviously 
we need then only reduce this other inductance by the amount of the leakage 
inductance in order to arrive at a combination which to the rest of the network 

-the rest of the network is concerned. 

I 
I I I I I I 

I 
///////////// / / / / / /  / / /  / / /  / / /  / / / /  / / 

Figure 12. 

i 1 

Figure 13. 

looks exactly like the ideal combination. Similarly we can deal with the case 
of a shunt inductance in parallel to another inductance. The equivalent circuit 
of figure 11 b, in which all the leakage inductance is concentrated on one side, 
is specially useful for dealing with such cases. The combinations just referred 
to are wanted in the physical dual circuit; this means that when planning the 
original equivalent planar network we have to look ahead for their dual counter- 
Parts. Hence, for instance, when we wish to eliminate entirely the error caused 
by the leakage inductance we have to look for an equivalent network in which 
one transformer coil is placed in parallel to a capacity of sufficient magnitude. 
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Similarly, We have to place one transformer coil in series with a capacitative imp-  
dance of sufficient magnitude when we finally wish to eliminate the error Caused 
by the shunt inductance. 

An application of the aforesaid principles and of the principles of this paper 
in general is illustrated in figures 12 to 14. Figure 12 depicts a mechanical 
system consisting of a prime mover and of four masses which are inter-linked by 
an arrangement of springs and viscous couplings. The mode of presentation 
follows the convention which facilitates the drawing of the circuit of the electrical 

Figure 14. 

inverse analogue. This circuit is shown in figure 13, and redrawn in a somewhat 
more familiar form in figure 14. From the latter figure it can be seen immediately 
that, for instance, a transformer could be placed in parallel to C,, and there- 
by the terminal of C, transferred from E to B. Other “ parallel ” solutions are 
also obvious. A number of “ series ” solutions has already been given in figures 8a‘ 
to 8 c ; some of these (e.g., 8 b or 8 c) enable us to place one transformer coil in 
series with a capacity-as stipulated above for the compensation of shunt 
inductance in the dual network 
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