
Python Implementation of DriveWire 4 and EmCee Protocols

PyDriveWire is a nearly complete DriveWire4 Server written in Python. The goal is to eventually implement all
of the features available. The server also implements additional features that are not available in DriveWire4.

PyDriveWire also has support for the EmCee Protocol for use with MCX Basic on the TRS-80 MC-10.

DriveWire 4 and EmCee Procotols can be used simultaneously on the server without reconfiguration.

1. Features
2. Getting Started
3. Command Line and Config File Options
4. Web User Interface
5. Command Console Interfaces
6. Using a Config File
7. Multiple Instances
8. Daemon Mode
9. EmCee Server

10. Experimental Printing Support
11. Debugging
12. Appendix: Supported DriveWire Commands

(new for v0.5) New Web User Interface (--ui-port)
(new for v0.5) Configuration File support
(new for v0.5) Multiple Instance Support — Requires config file
(new for v0.5) Enhanced pyDwCli command console tool
(new for v0.5) Comprehensive and detailed manual for server features
Remote dw command input on TCP port
Experimental EmCee Protocol Support
Supported on Linux, macOS, and Windows

The pyDriveWire Manual v0.5

Table of Contents

1. Features

dw server dir and dw server list enhanced to run on ALL OSes (Mac/Windows/Linux, etc)
Experimental printing support prints to PDF file
Connections to serial ports at all supported baud rates: 38400, 57600, 115200, 230400, 460800, 921600
Listen for incoming connection on any TCP port with a default of 65504
Ability to make outgoing TCP connections for serial-net converters
Disks to be mounted can be specified on the command line
Interactive CLI allowing all dw commands to be run
Support for DriveWire 4 virtual ports

dw commmands over vport
AT Modem-style connections

Outbound connections with ATD / ATDT or tcp connect

Inbound vports via tcp listen/join/kill commands

MIDI
OS9 /Z console windows
MShell Support

Back to top

pypy -- For maximum performance it is recommended to run the server with pypy. pypy is a Python
interpreter that does JIT compilation and results in greatly increased speed
pyserial -- Install using pip

Any OS where you can run Python, including but not limited to:
Linux
macOS
Windows

Notable Missing Features

2. Getting Started

2.1 Requirements

2.2 Supported Operating Systems

2.3 Installation (Linux/macOS/UNIX)

Download Latest: https://github.com/n6il/pyDriveWire/releases
Mac: brew install pypy; pypy -m pip install pyserial

Ubuntu: apt-get install pypy; pypy -m pip install pyserial

Experimental Printing Support

pypy -m pip install reportlab

There are multiple ways to get Python and pyDriveWire installed on Windows. As long as the basic
requirements are met you can use any method to install PyPy or Python. The requirements and two fully-tested
example installation workflows are below.

pyDriveWire is a Python 2.7 script. It may or may not run on Python3 (will likely migrate at a later time).
PyPy is preferred over CPython. Pypy has Just-In-Time compilation and pyDriveWire will run a lot faster
(and likely will also use lower CPU) than CPython, but pyDriveWire is completely compatible with either
one.
Use the latest version of Python 2.7 Compatible PyPy for Windows or Python 2.7.X
PyPy or Python should be installed in the system PATH
PIP is required for installing required python modules
PySerial module (use pip to install)
Experimental Printing Support requires the ReportLab module (use pip to install)

The instructions below direct you to install the latest stable release from the GitHub releases page. If you would
like to try out or help to test the latest pyDriveWire code you can obtain pyDriveWire from it's develop

branch. You can download a static zip file from GitHub or clone the repository and switch to the develop

branch.

We're more than happy to accept merge requests or bug reports for any version you are trying.

1. Obtain the latest copy of Python 2.7 Compatible PyPy for Windows from
https://www.pypy.org/download.html

2.4 Installation (Windows)

Requirements

Bleeding Edge/Experimental/Pre-Release Features

pyDriveWire Windows Installation Instructions (pypy)

https://github.com/n6il/pyDriveWire/releases

2. Extract it to the C:\Program Files (x86) folder
3. Add 2 entries to your system path:

a. the folder where you extracted PyPy to
b. the folder above and add \bin to the end

4. Download pip: https://bootstrap.pypa.io/get-pip.py
5. Install Pip. Open a command prompt and type: pypy get-pip.py

6. Install pyserial: pip install pyserial

7. Download (or git clone) the latest pyDriveWire release package from
https://github.com/n6il/pyDriveWire/releases and extract it.

8. Versions 0.4 and later have a pyDriveWire.bat batch file you can run. Earlier versions can be
started from the command prompt: pypy pyDriveWire.py <options>

1. Obtain the latest version of the Mame MSYS2 development package from:
https://www.mamedev.org/tools/

2. Extract it in C:\ so the path is either C:\msys64 or C:\msys32

3. Launch the mingw64 shell
4. Download pip. In the mingw64 shell type: wget https://bootstrap.pypa.io/get-pip.py

5. Install Pip: python get-pip.py

6. Install pyserial: pip install pyserial

7. Download (or git clone) the latest pyDriveWire release package from
https://github.com/n6il/pyDriveWire/releases and extract it.

8. From the mingw64 shell you can invoke pyDriveWire using the shell script:
./pyDriveWire <options>

Back to top

This manual section is meant as a quick and comprehensive guide to all of the pyDriveWire configuraiton
options. Many of the options have a detailed manual page which describes that individual feature. There will be
a link to those pages.

pyDriveWire Windows Installation Instructions (msys2/CPython)

3. Command Line and Config File Options

Command Line Parameter Summary

usage: pyDriveWire.py [-h] [-s SPEED] [-a] [-c] [-H HOST] [-p PORT] [-R]
 [-x EXPERIMENTAL] [-D CMDPORT] [-U UIPORT] [-C CONFIG]
 [--daemon] [--status] [--stop]
 [--pid-file DAEMONPIDFILE] [--log-file DAEMONLOGFILE]
 [--debug] [--version]
 [FILE [FILE ...]]

pyDriveWire Server <version>

positional arguments:
 FILE list of files

optional arguments:
 -h, --help show this help message and exit
 -s SPEED, --speed SPEED
 Serial port speed
 -a, --accept Accept incoming TCP connections on --port
 -c, --connect Connect to TCP connections --host --port
 -H HOST, --host HOST Hostname/IP
 -p PORT, --port PORT Port to use
 -R, --rtscts Serial: Enable RTS/CTS Flow Control
 -x EXPERIMENTAL experimental options
 -D CMDPORT, --cmd-port CMDPORT
 Remote dw command input
 -U UIPORT, --ui-port UIPORT
 pyDriveWire UI Port
 -C CONFIG, --config CONFIG
 Config File
 --daemon Daemon Mode, No Repl
 --status Daemon Status
 --stop Daemon Status
 --pid-file DAEMONPIDFILE
 Daemon Pid File
 --log-file DAEMONLOGFILE
 Daemon Log File
 --debug, -d
 --version, -v

The pyDriveWire config file can be used to set all of the command line options. This section tells you where to
put the config file and how to specify it on the command line. The details of the config file itself are in the Using
a Config File section of this manual.

Config File (global)

The config file can either be in a default location or can be specified from the command line.

Please see the pyDriveWire Config File and Using Multiple Instances guides for more detail about the config
file.

Note: Command line options have prescidence over config file. This means that if both are specified
the command line version will be used.

Note: Options are noted as either instance specific (instance) or global (global). Global options can
only be specified in Instance 0.

The default location for the config file is in your home directory: ~/.pydrivewirerc

Linux: /home/<userid>/.pydrivewirerc

Mac: /Users/<userid>/.pydrivewirerc

Windows: C:\Users\<userid>\.pydrivewirerc

Note: This option cannot be specified in a config file

-C <config_file>

or

--config <config_file>

pyDriveWire will start a server instance which listens for the DriveWire or EmCee client on <serial_port>

at <baud>

Linux/Mac: This should be a device such as /dev/ttyUSB0

Windows: COM1

--port <serial_port> --speed <baud>

Default Config file location

Specify a config file location:

Serial Port (instance)

Command Line:

or

-p <serial_port> -s <baud>`

option port <serial_port>
option speed <baud>

Serial Port mode also supports RTS/CTS flow control.

Note: DO NOT use RTS/CTS with a CoCo or MC-10 Bit Banger port. This is intended for use with a
UART that properly implements flow control. The RS-232 Pak or any device with a 6551 UART does not
implement flow control properly.

-R

or

--rtscts

option rtscts [True|False]

Note: Omitting this option line defaults to False

pyDriveWire will start a server instance which listens for the DriveWire or EmCee client on <tcp_port> .
Note that only one client can connect to each port.

--accept --port <tcp_port>

Config File:

Command Line:

Config File:

TCP Server (Accept Incoming Connections) (instance)

Command Line:

or

-a -c <tcp_port>

option accept True
option port <tcp_port>

pyDriveWire will start a server instance which makes an outgoing TCP connection to
<hostname>:<tcp_port> . Once that connection has been established pyDriveWire will listen for

DriveWire or EmCee commands on that connection. This is useful for many Telnet-To-Serial bridge devices.

--connect --host <hostname> --port <tcp_port>

or

-c -H <hostname> -p <tcp_port>

option accept True
option port <tcp_port>

pyDriveWire has a Web/HTTP User Interface. See the Web User Interface manual for more details.

-U <ui_port>

or

Config File:

Outgoing TCP Connections (instance)

Command Line

Config File:

Web/HTTP UI (global)

Command Line:

--ui-port <ui_port>

option uiPort <ui_port>

The Debugging option on the command line or config file is global and is applied to All Instances. See the
Debugging section for detail.

Note: The config file option must be put in Instance 0.

Default: No Debugging (Level 0)
Command Line: Default without any option
Config File: Default without any option
Config File (optional): option debug 0

Command Debugging (Level 1)
Command Line: -d

Config File: option debug 1

Connection Debugging (Level 2)
Command Line: -dd

Config File: option debug 2

Detailed manual for Daemon Mode

Note: If you are using a config file it is recommended to put the pid file and log file options in the config
file and to run the server with --daemon -C <config_file>

Note: If your config file is in the default location you do not need to specify it on the command line

option daemonPidFile <pid_file>
option daemonLogFile <log_file>

Config File:

Debugging (global)

Start pyDriveWire in Daemon Mode (global)

Config file:

file:///Users/n6il/ownCloud/Development/Python/pyDriveWire/docs/ch#11
file:///Users/n6il/ownCloud/Development/Python/pyDriveWire/docs/ch#8

With Config File in default location:

--daemon

Specify config file location:

--daemon [-C <config_file>]

Without Config File:

--daemon [--pid-file <pid_file> --log-file <log_file>]

Note: Either the config file or pid file option is required.

Note: This option cannot be specified in a config file

Note: If your config file is in the default location you do not need to specify it on the command line

With Config File in default location:

--status

Specify config file location:

--status [-C <config_file>]

or specify pid file location:

--status [--pid-file <pid_file>]

Note: Either the config file or pid file option is required.

Command Line:

pyDriveWire in Daemon Mode Status

Command Line:

Stop pyDriveWire in Daemon Mode

Note: This option cannot be specified in a config file

Note: If your config file is in the default location you do not need to specify it on the command line

With Config File in default location:

--stop

Specify config file location:

--stop [-C <config_file>]

or specify pid file location:

--stop [--pid-file <pid_file>]

Back to top

Command Line:

4. Web User Interface

The Disk Images screen allows you to manage which disk images are mounted in the pyDriveWireServer.

1. Instance Selector
2. Remote File Input Box
3. Insert
4. Eject
5. Local File Selector
6. Refresh Button

The Instance Selector allows you to change the current instance. The instance changes immediately upon
selection and the Disk Images Box (2) is automatically updated.

Note: If there is only one instance this pull down will now show up.

Each line in the Disk Images Section has a text box (2) for each virtual disk on the server. The text box shows

Disk Images Screen

1. Instance Selector

2. Remote File Input Box

the currently mounted disk image or None if no disk is mounted.

The Remote File Box can accept the following types of input:

A file path to a file on the pyDriveWire Server
A URL to a Disk Image

Example: A file path:

/tmp/DWTERM.dsk

Example: A URL:

http://www.ocs.net/~n6il/DWTERM.dsk

**Note: This box shows the location of the disk image on the pyDriveWire Server which may be a different
location than the Local File (5)**

Clicking the Insert button will mount the file named in the adjacent Remote File Input Box (2).

To Eject a disk image click the Eject button. The Remote File Box (2) will change to None .

To Mount a disk image which resides on the local computer, click the Choose File button. A file
selection dialog box will pop up. The selected file is automatically uploaded to the pyDriveWire server

To refresh the currently mounted disk images click the Refresh button.

The Command Console screen allows you to run commands on the pyDriveWire server and also shows all the

3. Insert Button

4. Eject Button

5. Local File Selector

6. Refresh Button

Command Console Screen

commands that have been run on the server by the user interface.

The screen has 2 parts: A scollable window with all the commands and command output, and second text box
to enter commands and a button submit those commands to the server

The command window is designed to be interactive so that you can easily explore the available commands
without looking up in the manual. Please see the Command Console Interfaces manual section for more detail.

Back to top

pyDriveWire can be controlled in multiple ways by using different Command Console Interfaces. Those
interfaces are:

1. The pyDriveWire "REPL" Interface
2. pyDwCli
3. Web UI Command Console

5. Command Console Interfaces

4. NitrOS-9 dw command

If you are a command line person this is for you. If the pyDriveWire server is invoked without Daemon Mode it
will start up what is called a "REPL" (Read Execute Print Loop) command console interface. This is a fancy
way of saying that it prints a prompt and waits for your input.

Suppose you started pyDriveWire as follows:

./pyDriveWire --accept --port 65504 /demo/DWTERM.dsk

If you hit enter on this command pyDriveWire will print some initialization info and then Greet you with a
command prompt where you can type any DriveWire Command:

$./pyDriveWire -C /tmp/empty --accept --port 65504
Accept connection on 65504
<dwsocket.DWSocketServer instance at 0x0000000106d22ea0>: Starting _readHandler...
accepting
pyDriveWire>

Simply type your commands at this prompt. See the tutorial below.

pyDwCli is a standalone command line tool which you can use to control the pyDriveWire server.

To use pyDwCli you must set up the WebUI. See the Web User Interface manual section for a bit more detail
on this, but in short you either put the option in your Config File

option uiPort 6800

or from the comand line:

./pyDriveWire --ui-port 6800 [...]

Once the Web UI is running you can use the pyDwCli.

pyDwCli has 2 modes: Interactive Mode and Single Command Mode

The pyDriveWire "REPL" Interface

pyDwCli

To run in the pyDwCli Interactive/REPL mode, you would run it as follows. Change localhost and 6800

to the correct hostname and port number:

$./pyDwCli http://localhost:6800
pyDriveWire> dw disk show

Drive File
----- --------------------------------------
0 None
1 None
2 None
3 None
pyDriveWire>

and you can type any DriveWire commands at the prompt. Type quit to exit:

pyDriveWire> quit
Bye!
$

pyDwCli can also run a single optional command specified on the command line. This is useful for scripting
control of pyDriveWire:

$./pyDwCli http://localhost:6800 dw instance show

Inst. Type
----- --------------------------------------
0* dwsocket.DWSocketServer localhost:65504
1 dwsocket.DWSocketServer localhost:65505

Suppose the user doesn't know what command to type and just typed help:

pyDriveWire> help
: Invalid command: help
commands: dw tcp AT ui mc

pyDwCli Interactive/REPL Mode

pyDwCli Single Command Mode

Command Console Tutorial

The server responded that help is not a valid command but it listed out the valid possible command prefixes dw
tcp AT ui mc. The user continues their exploration:

pyDriveWire> dw
dw: Invalid command: dw
dw commands: disk server port

Here the user typed dw and the server responded with all of the available commands under dw. If the user was
interested in disk operations they could type dw disk to see what sub commands are available:

pyDriveWire> dw disk
disk: Invalid command: disk
disk commands: insert reset eject show

The user is interested to show what disk images are mounted so this time the issued the full command:

pyDriveWire> dw disk show

Drive File
----- --------------------------------------
0 /Users/mfurman/Downloads/plato.dsk
1 None
2 None
3 None

If you already know the command you want you can of course type it directly without going through the
exploratory steps above.

Back to top

pyDriveWire accepts options from either the command line or a config file. There are two ways to provide a
config file to pyDriveWire:

The -C <cfgFile> or --config <cfgFile> command line options
A default config file in ~/.pydrivewirerc

If the config file exists it is read in. Options are applied to the config and commands are run through the
command parser.

6. Using a Config File

Note: If both command line options and a config file are provided the command line options override
the config file options

The config file has two different types of options

1. Options
2. Commands
3. Instance Tags
4. Comments

Options -- Option entries can be used to set any of the command line options to pyDriveWire. Options always
start with the word option and have the following format:

option <optionName> <optionValue>

Commands -- are any lines in the config file that are not options, instance tags, or comments. These are
standard pyDriveWire commands and they are run through the command parser immediately on start-up.

dw disk insert 0 /demo/DWTERM.dsk

Instance Tags -- Tags are used to tell pyDriveWire that you want multiple instances. Please see the Multiple
Instances manual section for more detail on how to configure this feature.

[second instance]

Comments -- are any lines where the first non-whitespce character is a #

This is a comment

options
option accept True
option port 65504
option uiPort 6800

commands
dw disk insert 0 /demo/DWTERM.dsk

Config File Format

Example Config File

For a full description of all the config file options please see the Command Line and Config File Options guide.

option accept True
option port 65504

option connect True
option host 127.0.0.1
option port 23

option port /dev/tty.usbserial
option speed 115200

option uiPort 6800

use with --daemon command line option

option daemonPidFile /tmp/pyDriveWire.pid
option daemonLogFile /tmp/pyDriveWire.log

option debug <0|1|2>

Back to top

TCP/IP Accept Options

TCP/IP Connect Options

Serial Options

Web Interface

Daemon Mode

Debug Options

7. Multiple Instances

pyDriveWire allows you to configure and use multiple instances which all run in parallel. Each instance talks to
one DriveWire client and each can mount different disk images. The instances are configured in a config file to
specify the connection point and any options you wish to set for for each instance.

Note: At the current time instances can only be specified in the config file and can only be started or
stopped along with the main invocation of pyDriveWire.

Instances are configured in a pyDriveWire Config file.

The options and commands for first instance instance 0 starts at the top of the config file and includes
any lines which are not comments or blank lines. The main instance commands and options stop at the first
instance tag.

Additional instances can be added by adding an instance tag:

[serial]

The name of the instance is for you to know what it's for, the server doesn't use it.

Instances are numbered sequentially. The first instance is always instance 0. The instance following that one is
instance 1, etc.

Options and commands for the instance start after the instance tag and continue until the next instance tag.

Multiple instances can be specified.

Configuring Multiple Instances

Example Config

Main Instance
option accept True
option port 65504
option uiPort 6800
dw disk insert 0 /demo/plato.dsk

[serial]
option port /dev/ttyS0
option speed 115200
dw disk insert 0 /demo/DWTERM.dsk

[connect]
option connect True
option host mfurman-a01.local
option port 54321

Instance 0 listens on port 65504 for incoming connections and is mounting a disk image.

Instance 1 uses a serial port at 115200 baud and also mounts a disk image

Instance 2 makes an outgoing TCP/IP connection to the specified host and port.

pyDriveWire has a few commands to control instances. These commands should only be used from the
command line interface, the web interface, or pyDwCli.

Note: Using instance commands from a DriveWire Client is not recommended.

dw instance show

dw instance select <inst>

Shows a list of the currently configured instances. The current instance is marked with an asterisk * :

Instance Commands

dw instance show

pyDriveWire(0)> dw instance show

Inst. Type
----- --------------------------------------
0* dwsocket.DWSocketServer localhost:65504
1 dwserial.DWSerial /dev/ttyS0 115200
2 dwsocket.DWSocket mfurman-a01.local:54321

Switches to a different instance.

pyDriveWire(0)> dw instance select 1
Selected Instance 1: dwserial.DWSerial /dev/ttyS0 115200
pyDriveWire(1)>

The server will respond with a line telling you which instance you just switched to. The command prompt will
also change to show the current instance. You can see in the example above that the original prompt was
instance 0 and it switched to instance 1.

Back to top

When pyDriveWire is run on any Linux/Unix/macOs operating system it can be run in a daemon mode where
the server in the background in a "daemon" mode. When run in this mode there is no console repl and you
must use either the Web UI or pyDwCli to control it.

Note: This mode is not supported on Windows

Daemon mode can be enabled from either the config file or from the command line. You do not need to specify
both but you can. Note that if you do specify both the config file parameters will override the command line
ones.

dw instance select <inst>

8. Daemon Mode

Configuring Daemon mode

Daemon mode from a config file

The easiest way to use Daemon mode is to create a config file (See Using a Config File) and put the following
options in it in instance 0:

option uiPort 6800
option daemonPidFile /tmp/pyDriveWire.pid
option daemonLogFile /tmp/pyDriveWire.log
[... additional options required ...]

With the config file in the default location of ~/.pydrivewirerc you can then start the pyDriveWire server
in daemon mode with a single option:

./pyDriveWire --daemon

Example: Daemon mode is not running

$./pyDriveWire --status
pyDriveWire Server status:notRunning

Example: Deamon mode is running

$./pyDriveWire --status
pyDriveWire Server pid:1114 status:Running

$./pyDriveWire --status
pyDriveWire Server pid:1114 status:Running

$./pyDriveWire --stop
pyDriveWire Server pid:1114 msg:Stopped

$./pyDriveWire --status
pyDriveWire Server status:notRunning

The server can be invoked as follows from the command line:

Checking server status

Stopping the server

Starting daemon mode from the command line

./pyDriveWire \
 --ui-port 6800 \
 --daemon \
 --pid-file /tmp/pyDriveWire.pid \
 --log-file /tmp/pyDriveWire.log \
 [... additional required options ...]

This will start the server in daemon mode with a web UI listening on port 6800 .

Back to top

pyDriveWire version v0.4 adds experimental support for the EmCee protocol used on the TRS-80 MC-10
running MCX Basic (MCX Basic is available on the MCX-128 expansion card). The EmCee protocol support is
always turned on allowing any application connected to a pyDriveWire server to use EmCee and DriveWire
protocols simeltaneously. With this setup one could use a DriveWire application on a MC-10 or a EmCee
application on a CoCo without the need to switch servers.

As of v0.4 the following MCX Basic Commands are supported:

SETDIR

DIR

LOAD

LOADM

The following file formats are supported:

.C10

.CAS

1. You must use 38400 baud to use the EmCee protocol on a MC-10 running MCX Basic
2. The SETDIR command works differently than the standard EmCee Server.
3. At the current time pyDriveWire only supports .C10 and .CAS formatted files. WAV and BIN file

support is planned for a future update.

9. EmCee Server

Experimental EmCee Protocol Support

Notes

4. At the current time you cannot open a .C10 or .CAS file from the command line. Use the LOAD or
LOADM command.

The EmCee server in pyDriveWire is on by default and there are no commands to turn it on or off. The only
special requirement is that You must use 38400 baud to use the EmCee protocol on a MC-10 running
MCX Basic. Please see the rest of this documentation for how to invoke pyDriveWire. Once pyDriveWire is
started you can use the normal MCX Basic commands to access files on the server.

<path> -- full path name a directory on the server

The pyDriveWire version of SETDIR is different than the normal EmCee server. You must provide a full path
name to the directory you want to switch to.

Windows: SETDIR C:\Users\Mikey\MC-10

Mac/Linux: SETDIR /home/Mikey/MC-10

<path> -- optional full path name a directory on the server

List the directory on the server. The default directory is the one where pyDrivewire was invoked. <path> is
optional and must be a full path name to the directory you want to list.

Using pyDriveWire's EmCee Server

SETDIR <path> - Set the directory on the server

Options

Description

Examples

DIR [<path>] - List directory on the server

Options

Description

Examples

DIR

Windows: DIR C:\Users\Mikey\MC-10

Mac/Linux: DIR /home/Mikey/MC-10

<file> -- .C10/.CAS file to load from

The pyDriveWire server searches the provided .C10 or .CAS file and loads the first file in the tape image.

<file> -- .C10/.CAS file to load from

The pyDriveWire server searches the provided .C10 or .CAS file and loads the first BIN file in the tape
image.

The pyDriveWire server has a powerful "aliasing" system that is quite different than the official EmCee servers.
The pyDriveWire system has three different types of aliases. File and Web Aliases can be with LOAD/SAVE
commands and Path Aliases can be used with DIR/SETDIR commands. The official servers can only use
aliases for the SETDIR command.

In the pyDriveWire server all alias names are converted to upper case. For example if you had an alias like this
one:

LOAD <file> - Load a program from the server

Options

Description

LOADM - Load a binary program from the server

Options

Description

EmCee Server Aliases

Aliases are NOT case sensitive

Server Aliases
==============
Alias: DWTERM.WAV Path: /demo/dwterm.wav

The case of the alias requested from the MC-10 is always converted to upper case so any of the following
would load the same alias:

LOADM "DWTERM.WAV"

LOADM "dwterm.wav"

LOADM "DwTeRm.WaV"

The PyDriveWire Server supports the following types of Aliases:

Web Aliases
Path Aliases
File Aliases

A web alias is an alias to a HTTP URL. When the MC-10 requests the alias using a LOAD or LOADM

command the URL which the alias points to will be downloaded to a temporary file and then opened normally.
Note that you won't see the actual file name, and when the file is closed the temp file will be automatically
deleted.

A path alias is an alias to a directory. Path aliases can be used with DIR or SETDIR commands to change
to the directory pointed to by the alias.

A file alias points to a file. Full or relative pathnames could be used. When the MC-10 requests the the alias the
path to which the alias points to will be used and opened normally.

See the help for mc alias show for an example.

Show the currently installed aliases:

Types of aliases

mc alias show

Server Aliases
==============
Alias: POKER.C10 Path: http://www.colorcomputerarchive.com/coco/MC-10/Cassettes/Games
/Jim%20Gerrie's%20Games/POKER.C10
Alias: DEMO Path: /demo
Alias: DWTERM.WAV Path: /demo/dwterm.wav

Explanation of example Aliases:

POKER.C10 -- This is a web alias -- LOAD "POKER.C10"

DEMO -- This alias is a directory alias -- SETDIR "DEMO"

DWTERM.WAV -- This is a file alias -- LOADM "DWTERM.WAV"

Adds the requested alias with path as the destination. The alias is always converted to upper case before
addition lookup. The path that an alias points to is case sensitive. Spaces and punctuation are permitted.

Add a Web Alias:

pyDriveWire> mc alias add poker.c10 http://www.colorcomputerarchive.com/coco/MC-10/C
assettes/Games/Jim%20Gerrie's%20Games/POKER.C10
Add Alias
==============
Alias: POKER.C10 Path: http://www.colorcomputerarchive.com/coco/MC-10/Cassettes/Games
/Jim%20Gerrie's%20Games/POKER.C10

Add a file alias:

pyDriveWire> mc alias add dwterm.wav /demo/dwterm.wav
Add Alias
==============
Alias: DWTERM.WAV Path: /demo/dwterm.wav

Remove an alias. The alias is always converted to upper case before addition removal.

mc alias add <alias> <path>

mc alias remove <alias>

pyDriveWire> mc alias remove qbert.c10
Remove Alias
==============
Alias: QBERT.C10 Path: http://www.colorcomputerarchive.com/coco/MC-10/Cassettes/Games
/Jim%20Gerrie's%20Games/QBERT.C10

Back to top

pyDriveWire has experimental printing support.

pyDriveWire v0.3 includes experimental printing support. The -x printer command line option enables it.
Currently this only suports printing text, and the out is rendered into a PDF.

Printing support requires the reportlab module. This module can be installed with pip:

pypy -m pip install reportlab

Most of the standard Nitros9 DriveWire builds have printing support built in. Any program that uses the
standard /P printing device will work just fine. A simple example for testing:

dir >/P

The console log will explain where the output PDF went:

DWServer: Enabling experimental printing support
Printing: opening print buffer: /var/folders/1y/cjrxv35d76bc54myg7hy7k1c0000gn/T/tmp2
zG0Pb.txt
Printing to: /var/folders/1y/cjrxv35d76bc54myg7hy7k1c0000gn/T/tmpWdKRQY.pdf
Printing: closing print buffer: /var/folders/1y/cjrxv35d76bc54myg7hy7k1c0000gn/T/tmp2
zG0Pb.txt

Sample: printing_sample.pdf

10. Experimental Printing Support

Prerequisites

Use From NitrOS-9

file:///Users/n6il/ownCloud/Development/Python/pyDriveWire/docs/printing_sample.pdf

Robert Gault has written some code to redirect printing in BASIC to the DriveWire Printer.

Full Thread: Printing from Disk Extended Color Basic (via Drivewire)

Robert Gault's Reply

Robert Gault: Code is here

Donwload: Drivewire Printing With Disk Basic(Robert Gault).zip

Back to top

pyDriveWire server has extremely powerful debugging capabilities. These far surpass what is available in any
other DriveWire server out there in both conciseness, readability, and utility.

pyDriveWire has 3 levels of debugging:

Default: No Debugging (Level 0)
Command Debugging (Level 1)
Connection Debugging (Level 2)

The Debugging option on the command line or config file is global and is applied to All Instances.

Note: The config file option must be put in the first instance.

No debugging commands are sent on the pyDriveWire Console. This is the default if no debugging option or
command is specified.

You may also specify this in the config file:

option debug 0

This debugging level displays one line for each command the DriveWire or EmCee client sends to the server.

Use from Disk Extended Color Basic

11. Debugging

Default: Debug Level 0

Debug Level 1: Command Logging

https://pairlist5.pair.net/pipermail/coco/2016-December/thread.html#156468
https://pairlist5.pair.net/pipermail/coco/2016-December/156489.html
https://pairlist5.pair.net/pipermail/coco/2016-December/156562.html
http://www.colorcomputerarchive.com/coco/Disks/Utilities/Drivewire%20Printing%20with%20Disk%20Basic%20%28Robert%20Gault%29.zip

See the pyDriveWire Debugging Guide for more detail.

-d

option debug 1

If you typed DIR at a HDBDOS prompt you might see something like this:

cmd=d2 cmdReadEx disk=0 lsn=322 rc=0 f=
cmd=d2 cmdReadEx disk=0 lsn=307 rc=0 f=
cmd=d2 cmdReadEx disk=0 lsn=308 rc=0 f=

cmd=d2 cmdReadEx -- This is the DriveWire Command that the client sent to the server. In this case
it's a READEX command
The command reading from disk=0

Sector lsn=322

The result code is usually printed as rc=N and 0 means Success.

This debugging level includes command debug level 1 and in addition to that displays a HexDump of every
byte the pyDriveWire server sends and receives from the client. This can be extremely verbose and slows
down the pyDriveWire server slightly so it is not recommended for normal use. See the pyDriveWire Debugging
Guide for more detail.

-dd

option debug 2

Command Line:

Config file:

Sample Output

Debug Level 2: Connection Debugging

Command Line:

Config file:

Debug Level 2 includes level 1 debugging and is even more verbose:

socket read: <dwsocket.DWSocketServer instance at 0x0000000107cfef20> len: 1
0000: |d2 | |. |
socket read: <dwsocket.DWSocketServer instance at 0x0000000107cfef20> len: 4
0000: |00000142 | |...B |
socket write: <dwsocket.DWSocketServer instance at 0x0000000107cfef20> len: 256
0000: |ffffffffffffffff ffffffffffffffff| |........|
0010: |ffffffffffffffff ffffffffffffffff| |........|
0020: |ffffffffffffffff ffffffffffffffff| |........|
0030: |ffffffffffffffff ffffffffffffffff| |........|
0040: |ffffffffffffffff ffffffffffffffff| |........|
0050: |ffffffffffffffff ffffffffffffffff| |........|
0060: |ffffffffffffffff ffffffffffffffff| |........|
0070: |ffffffffffffffff ffffffffffffffff| |........|
0080: |ffffffffffffffff ffffffffffffffff| |........|
0090: |ffffffffffffffff ffffffffffffffff| |........|
00a0: |ffffffffffffffff ffffffffffffffff| |........|
00b0: |ffffffffffffffff ffffffffffffffff| |........|
00c0: |ffffffffffffffff ffffffffffffffff| |........|
00d0: |ffffffffffffffff ffffffffffffffff| |........|
00e0: |ffffffffffffffff ffffffffffffffff| |........|
00f0: |ffffffffffffffff ffffffffffffffff| |........|
socket read: <dwsocket.DWSocketServer instance at 0x0000000107cfef20> len: 1
0000: |ff | |. |
socket read: <dwsocket.DWSocketServer instance at 0x0000000107cfef20> len: 1
0000: |00 | |. |
cmd=d2 cmdReadEx disk=0 lsn=322 rc=0 f=
socket write: <dwsocket.DWSocketServer instance at 0x0000000107cfef20> len: 1
0000: |00 | |. |

Decoding this:

1. pyDriveWire read 1 byte d2 from the CoCo
2. pyDriveWire read 4 bytes 00000142 from the CoCo
3. pyDriveWire sent a block of 256 bytes to the CoCo
4. pyDriveWire read 1 byte ff from the CoCo
5. pyDriveWire read 1 byte 00 from the CoCo
6. pyDriveWire indicates that the cmdReadEx is finished. This is the same single debug line described above

in debug level 1
7. pyDriveWire sent 1 byte 00 to the CoCo

Sample Output

If you really want to learn the internal details of how the DriveWire Protocol works read the manual!

DriveWire 4 Specification

Back to top

dw disk

dw disk show

dw disk insert 0 <file>

dw disk eject 0

dw disk reset 0 -- (re-open)

dw port

dw port show

dw port close <n>

dw server

dw server instance

dw server dir [<path>]

dw server list <file>

dw server dump

dw server debug <0|False|1|False>

dw server timeout

dw server version

dw server conn debug <0|False|1|False>

dw instance

dw instance show

dw instance add

dw instance select

tcp commands

tcp connect <host> <port>

Learning more about the DriveWire Protocol

12. Appendix: Supported DriveWire Commands

https://sourceforge.net/p/drivewireserver/wiki/DriveWire_Specification/

tcp listen <port> ... -- Remainder of options ignored
tcp join <channel>

tcp kill <channel>

AT Commands
AT

ATD<host>:<port>

ATDT<host>:<port>

ATE

ATH

ATI

ATO

ATZ

EmCee Commands
mc alias show

mc alias add

mc alias remove

mc setdir

mc getdir

mc show

mc eject

Debugging commands
dw port debug [True|1|False|0]

dw server debug [True|1|False|0]

dw server conn debug [True|1|False|0]

dw server dump

dw server timeout <s>

Back to top

